If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42y^2-y-20=0
We add all the numbers together, and all the variables
42y^2-1y-20=0
a = 42; b = -1; c = -20;
Δ = b2-4ac
Δ = -12-4·42·(-20)
Δ = 3361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{3361}}{2*42}=\frac{1-\sqrt{3361}}{84} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{3361}}{2*42}=\frac{1+\sqrt{3361}}{84} $
| x^2−324=0. | | 90=3x+3x+15 | | 1/2x+1/5x-1/10x=2 | | 4×-5y=-6×-2y= | | 361*x=12348 | | 2b-13=9 | | 15×b=180 | | a-4+a=6 | | 3+7y=6y-1 | | 3y-18=-4+15y-50 | | 9+2z=7z+49 | | 8=34a+12−a+4 | | 4+k2=−3 | | 15x=705 | | 15x+16-13x=-5x-33 | | 13x-9x= | | ?x4=36 | | 6x+2=9+7x | | 0.04x+0.10(300-x)=0.44 | | 3c-11+4c-6=19 | | f=3(12) | | v=6(7) | | (2x+3)+119+90+90=360 | | r/2=–2.3 | | x2–1=3 | | 3x(30)=170 | | 18=g+1 | | 3+p=1/3 | | (2x+20)=(x+40) | | 5x=3·(x+4) | | 114+5x+4=180 | | 49x-245=2156 |